Agenda

• Maximo Performance
• Maximo Performance Troubleshooting
• Tools
• Resources
• Q&A
Application Architecture

Maximo Anywhere

- Mobile Device
 - Web Server Load Balancer
- UI Cluster
 - Application Server
 - Application Server
 - Application Server
 - maximo
 - UI Web Server Load Balancer
 - Load Balancer
- Worklight Server
 - Worklight Server
 - Worklight Server
 - ODM Applications
- Integration Cluster
 - Application Server
 - Application Server
 - Application Server
 - maximo
 - Security/LDAP System
 - OSLC Provider
 - Inbound Queue
 - Outbound Queue

Database

Worklight

Maximo

Maximo Rpt

External Systems
Factors in System Performance

- System architecture setup
 - Hardware/processor/memory
 - Operating System performance
- Application server configuration
- Scheduled tasks (cron tasks)
- Reporting
- Integration with other systems using the integration framework
- Network
- Bandwidth/Latency
- Load balancing
- Database tuning
- SQL/Index tuning
- Application Configurations
 - Default behavior
 - Environment settings
 - Screen design
 - Validation/sync settings
- Client workstation configuration
- Miscellaneous performance improvement tips
- Troubleshooting
Maximo Infrastructure

- **Network**
 - Performing within recommended parameters?
- **Hardware**
 - Is there enough hardware?
- **Operating System**
 - Performing within recommended parameters?
 - **Services**
 - Are services optimally configured?
 - **Maximo**
 - Tune / Troubleshoot
 - Application configuration

Each level is tuned and troubleshooted as follows:

- **Network Infrastructure**
- **Hardware**
- **Operating System**
- **Services**
- **Maximo**
Architecture - Sizing

- Application Server
 - 64-bit
 - JVMs Clustering
 - Memory – Both physical and JVM memory
 - Current fix packs
- Database Server
 - Disk Usage sizing
 - CPU sizing
 - Database memory
- Reporting Server
- LDAP/Directory Server
- Integration Component
 - Transaction rates
 - Clustering
- Network
 - Bandwidth
 - Latency
Hardware/Operating System

- Using the minimum hardware requirements may produce the minimum acceptable application performance

- Using virtual technology to maximize hardware availability can reduce overall performance (VM overhead, shared resources)

- Use physical memory. Sharing memory and swapping to disk has a performance impact

- Use Operating System tuning to maximize throughput (temp/swap space, background processing, disk/storage tuning)
Application Server

- Each application server vendor will have their own requirements and recommendations related to supporting infrastructure and settings. There is no “one size fits all”

IBM WebSphere
- Generic JVM Argument : -Dsun.rmi.dgc.ackTimeout=10000

Oracle WebLogic

For both platforms - Memory settings: Initial: 4096m / Maximum: 4096m
Note: Some implementations may be using 6GB. More memory is not always a good answer. Too much memory can slow GC (garbage collection).
Application Server

- Application Servers should always be setup in a cluster
 - JVMs per cluster based on load
- UI Cluster
 - End user logins
 - 1 CPU per JVM
 - 4-6 GB heap
 - 50-75 users per JVM
- Crontask Cluster
 - Background tasks
 - 1 CPU per JVM
 - 4-6 GB heap
 - At least 2 JVMs
- Integration Cluster
 - Integration transactions
 - 1 CPU per JVM
 - 4-6 GB heap
 - At least 2 JVMs
Application Server

• Report Cluster
 • Report Execution
 • 1 CPU per JVM
 • 4-6 GB heap
 • At least 2 JVMs

• JVM tuning
 • Heap
 • Garbage Collection
 • Load Balancing

• Use replication to populate and synchronize a reporting database
Application Server

- Per JVM – allocate an additional 1GB of memory for internal usage
 - 4GB JVM needs 5GB total memory

- Allocate 25% additional memory for the Operating System

- Take into account all processes that might be started on the physical/virtual server
 - Eg. JVM, node manager, deployment manager, web server, anti-virus, etc.
Application Server

- JVM arguments
 - -Dsun.rmi.dgc.ackTimeout
 - This represents how often the server checks for objects that can be garbage collected. The time value is in milliseconds.
 - The best practice for this is 10000 (10 seconds). The default value is 10 minutes.
 - Setting this value too low can increase CPU usage.
 - -Xdisableexplicitgc
 - This property should be set to disable explicit garbage collection, this disables all System.gc() calls from initiating garbage collection.
 - -Xmn
 - The nursery size should be set to 25% of the maximum heap. This property should be used along side the -Xgcpolicy:gencon in which the garbage collection policy places objects in separate areas of the heap based on lifetime.
Application Server

• JVM arguments
 • -Xgcpolicy:gencon
 • The gencon policy is now the default policy in WebSphere 8.5.5 and is set out of the box when doing a Maximo install. This is the recommended policy. The gencon policy places objects into the heap in separate areas based on how long they have been active. The heap is split into a nursery based on the –Xmn setting. The nursery can be garbage collected without the overhead of cleaning up the entire heap at the same time.

• -Xgcpolicy:optthruput
 • This used to be the default policy for WebSphere, in version 8 and forward the default policy has been changed to gencon. Optthruput works based on multiple passes. First it goes through all reachable objects and marks it as active data, it then passes through a second time to clean up any non marked objects, freeing up memory.
 • This can not be used along with –Xmn (nursery) parameter.
Application Server

• Thread pool
 • Thread pools are a collection of threads on a server that can be reused when the JVM creates a request rather than create a new thread with each new request.

• Best Practices
 • Minimum number of threads in the pool should be set to 20 for the default thread pool and 120 for the WebContainer thread pool
 • The thread inactivity timeout defines how long a thread can be inactive before the thread is returned to the pool. The default thread pool should be set to 30000 and WebContainer thread pool to 60000
 • Enable Allow thread allocation beyond the maximum size. This defines if a thread can be created past the maximum thread pool value
 • Thread pool settings are defined for each individual server.
Database

- Each database vendor will have their own requirements and recommendations related to supporting infrastructure and settings. There is no “one size fits all”
- Tune database as per install and best practices documents
 - Specific settings are documented
 - Oracle
 - Use cursor_sharing=force
 - The more memory the better
 - DB2
 - Lock timeout
 - Memory settings
 - Schedule regular maintenance for reorganization and runstats
 - For DB2 9.5 and later set DB2_WORKLOAD=MAXIMO
 - SQL Server
 - Turn off page level locking
 - Use Maximo properties for SQL Server
 - Do not try to use with more than 250 concurrent users
Database

- Database tuning is the most important performance improvement task
 - Maximo is extremely database centric
 - Use database tools to find long running queries and recommended indexes

- Analyze database memory and user I/O
 - Maximo fetches a lot of data into application server
 - Increase system memory. Helps reduce user I/O

- Separate tablespaces and mount points to optimize I/O
Database

- Setup an index statistics update schedule
 - Weekly update helps in better performance
- Purge / Archive data
 - Transactional data needs archiving plus purging
 - Purge on a regular basis
 - E.G. Workflow transaction data, login tracking, start center
- Add indexes as they are needed
 - Do not be scared to add indexes
 - In Maximo, 80% is data fetch, 20% is data insert/update
 - Lack of right indexes causes more performance problem than slowing down on insert/update
- Sequences (Oracle & DB2)
 - Enable sequence caching
 - Increase cache size for sequences to 50 (except maxseq)
 - Increase cache size for maxseq sequence to 500
Database

• High Availability Database Setup
 • DB2 provides HACMP and HADR
 • Oracle has RAC
 • SQL Server High Availability
 • High Availability helps in failover

• Separate reporting database helps reduce load on the primary database

• Multi-site setup use the property to improve SQL timing
 • mxe.db.useSiteInListQuery=1
 • This includes the list of sites the user has access in the SQL statement instead of figuring out through complex SQL against multiple tables
Database

• 1 CPU for every 100 database connections

• Environment of 400 concurrent users, total database connections may be double
 • 400 concurrent users requires at least 8 CPUs
 • Consider peak load
 • Heavy reporting usage will increase database load and requires more database CPU

• 2GB SGA memory for every 100 database connections

• 400 concurrent users = 8GB of SGA
The Gray Area

• Tuning the application is sometimes a cross between application and middleware settings. This occurs with both database server and application server.
• Tuning the database server and then sending it bad queries will still result in poor performance
 • Make sure any application properties for connecting to the database are set
 • Use the approved versions of JDBC drivers
 • Use logging best practices - too much SQL logging impact results
• Tuning the application server and then putting too much load on it will still result in poor performance
 • Separate functionality into dedicated JVMs (UI, Cron, Report, Integration)
 • Limit concurrent users to 75 per dedicated UI JVM
Querying/SQL

- Search Methodologies – Default to “EXACT”
 - If possible, change WILD card searches to EXACT
 - Educate users to use % wild card option in search fields
 - Reduces ‘like’ searches and greatly improved database query times
- Set most ALN fields to UPPER
- Educate users on ad-hoc queries
 - Check for newly created user queries and optimize
- Identify long running reports
 - Review SQL in reports
- Escalations
- Conditions
- Start Center result sets
- Doclinks query
- KPIs
- List panel order by queries
 - Can remove order by in presentation XMLs
Reporting

- Reporting Cluster (BROS)
- Reporting Database
- Identify long running reports from report usage and tune them
- Can identify poor performing ad hoc reports
- Scheduled report cron tasks
 - Execute in Cron Cluster
 - Separate these out of UI servers
 - Ensure long running scheduled reports are not submitted at the same time
- Property mxe.report.birt.maxconcurrentrun defines how many concurrent reports can run on a given Maximo JVM
 - Default value is 5 – good starting point
- Recommendations
 - 2 * num of CPU
 - Depends on the complexity of the reports
Integration Framework

- Separate sequential inbound and sequential outbound queues for integrated system
- Limit the number of message-driven beans (MDBs) on the continuous queue
- Exception-handling queues
 - ‘bad’ data redirect out of continuous queue
- XML/HTTP instead of Simple Object Access Protocol (SOAP) web services
 - Less overhead and better performer under load
- File import for XML documents containing multiple records
Network

- 50ms or faster round-trip packet response between client and application server
- Low bandwidth or high latency network
 - Citrix or Terminal Server
- Compression techniques
 - HTTP Compression
 - Web server
 - Hardware Compression
 - Network appliances – Juniper and Riverbed
 - Provide compression and caching
 - Gzip Compression
 - Maximo configuration
- Acceleration
- Caching
 - MaxAge – enabled by default on the application server
- Configuring asynchronous and client side validation can improve the users experience. Good screen design can reduce traffic
Miscellaneous

- Task Focused Screen Design – Create small screens
- Off Hours WO Generation, Reorder, Crons, and Reporting
- Reduce start center data retrieval
 - Keep the default start center simple to no data fetch portlets
 - There can be multiple start centers – the first one displayed should be simple to avoid excessive data fetch
 - Be sure that queries used on the Start Centers return small numbers of rows and are well tuned
- Client Browser Configuration – Page refresh to Automatic
- Database connection pooling
 - Lower properties values
- Limit query times
 - System properties
- Limit number of fields on a single screen / develop silo (business unit) based screens with only the fields required for that silo
- Configure client side and asynchronous validation to limit real time interaction with the database server
Miscellaneous

- Tune DOCLINKS relationships or disable DOCLINKS
- Limit the number of objects that can be fetched from the database in a single result set (system properties)
- Carefully consider business requirements for frequency of Cron Tasks and Escalations
- Tune cron tasks and Escalations
 - Adjust start timings to spread the load
 - Load balance across multiple JVMs
 - New in Maximo 7.6 – cron task load balancing
Troubleshooting

- Analyze and clearly define reported problem
 - Understand what is being reported. “Application is slow” is not a definition. Find out what is slow. See it for yourself if possible
- Determine/define what is “successful resolution”
 - Don't allow client perception to interfere with a solution. Get a clear definition of what is acceptable so you have a measure for success
- Focus on technologies that might impact issue
 - If users at one plant are affected but users at another plant are not affected, it is likely not a server problem. Focus on items that can impact the affected area
Troubleshooting - Logging

- Keep Maximo as well as application server logging to minimal level unless investigating a problem
 - Set everything except Maximo root logger to ERROR
 - Maximo logging adds 5% + overhead
- Clean up log folders from filling up
 - Watch out for heap dumps as these files are very large
- Since logging changes can be applied dynamically, turn logging on when needed and turn it off when done – Logging application
- SQL logging to collect all SQL statements
- New in Maximo 7.6 – logging marker
- If analyzing memory usage
 - Use verbose GC logging. Clean up old log files
Troubleshooting - Properties

• System Properties used as part of logging
 • Enabled through System Properties application. Dynamic, can be enabled without re-building application EAR file
• Performance properties
 • mxe.mbocount
 • Capture snapshot intervals of memory usage
 • mxe.db.logSQLTimeLimit
 • Captures SQL statements that take longer than the specified amount of time to return
 • mxe.db.fetchResultLogLimit
 • Captures the number of objects an MBO loads while it is processing
• mxe.db.logSQLPlan (Oracle only)
• mxe.db.sqlTableScanExclude (Oracle only)
• FetchStopLimit
 • Enable and use until you reach a stable state. Returns an error to the end user.
 • mxe.db.fetchStopLimitEnabled
 • mxe.db.fetchResultStopLimit
 • mxe.db.fetchResultStopLimit.OBJECTNAME
 • mxe.db.fetchStopExclusion
• FetchResultLogLimit
 • This greatly helps in identifying excessive data fetch
 • Use this to identify the code that is fetching excessive data
Troubleshooting

• Enable Connection Pool Watchdog to monitor database connection pool
 • Enabled in the Loggings application
• Close long running database connections
 • Maximo 7.5.0.3 properties introduced
• Use database tools to find long running queries and recommended indexes
• Test queries through SQL development tools and add required indexes
 • Always make sure the indexes are added through Maximo Database Configuration to retain during fix pack installation and upgrades
• Network pings and trace routes from client to Maximo server
• Monitor CPU and memory usage
Tools

- Integrity Checker to find Maximo schema problems that can affect applications as well as performance
 - Integrity Checker can be found in the Maximo tools folder (integrityuui)
 - Integrity Check should be done in development phase to production phase
- LA Test Fix Tool
 - Report of limited availability fixes (one-off) installed
 - LA test fix tool can be found in the Maximo tools folder (LATestFixReportWriter)
- IBM Thread and Monitor Dump Analyzer for Java
 - Identification of hangs, deadlocks, resource contention and bottlenecks in Java threads
 - Classpath
 - Java and Garbage Collection parameters
- Heap Analyzer
 - Possible heap leak detection
- IBM Support Assistant (ISA)
 - Add-on tools for heap and thread analysis
- Real world load testing
Tools

- **Customization Detection Tool**
 - Report the lists all the services, object, and attribute classes that have been extended
 - Displays extensions (class customizations) in a class hierarchy structure
 - Shows percentage customized
 - Reports on services, objects and attributes

<table>
<thead>
<tr>
<th>Class</th>
<th>IBM Tivoli® Integration Composer</th>
<th>IBM Maximo® Asset Management for IT (f/k/a)</th>
<th>IBM Maximo® Calibration</th>
<th>IBM Maximo® Linear Management</th>
<th>IBM Maximo® Asset Management for Oil and Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Total</td>
<td>e, All</td>
<td>e, All</td>
<td>e, All</td>
<td>e, All</td>
</tr>
<tr>
<td>B</td>
<td>F https://ibm.com/ software</td>
<td>F, All</td>
<td>F, All</td>
<td>F, All</td>
<td>F, All</td>
</tr>
<tr>
<td>C</td>
<td>ASSET</td>
<td>asset</td>
<td>asset</td>
<td>asset</td>
<td>asset</td>
</tr>
<tr>
<td>D</td>
<td>Assignment</td>
<td>assignmentSet</td>
<td>assignmentSet</td>
<td>assignmentSet</td>
<td>assignmentSet</td>
</tr>
<tr>
<td>E</td>
<td>M segments</td>
<td>segmentsSet</td>
<td>segmentsSet</td>
<td>segmentsSet</td>
<td>segmentsSet</td>
</tr>
<tr>
<td>F</td>
<td>A, PM</td>
<td>A, PM</td>
<td>A, PM</td>
<td>A, PM</td>
<td>A, PM</td>
</tr>
<tr>
<td>G</td>
<td>CLASSIFICATION</td>
<td>classificationSet</td>
<td>classificationSet</td>
<td>classificationSet</td>
<td>classificationSet</td>
</tr>
<tr>
<td>H</td>
<td>CLASSIFICATION/</td>
<td>classification/</td>
<td>classification/</td>
<td>classification/</td>
<td>classification/</td>
</tr>
</tbody>
</table>

Object Example
Tools

- Performance Analysis Suite
 - Help analyze performance problems
 - Plug-ins
 - TPAE:Config plugin
 - Performance white paper compliance checking
 - Dashboard tab shows a high level result of performance compliance checking result
Tools

• Wait Tool
 • Identifies the bottlenecked resources, and shows the code that drives this load.
 • Works on any Java application
 • No system of agents
 • Output is an HTML report
Tools

- Maximo Management Interface (MMI)
 - New in Maximo 7.6 – http://hostname:port/maximo/oslc/members
 - Integrated into Maximo framework
 - Real time access to the environment
 - Extendable
 - Provides input to monitoring tools
 - Standardized JSON output
 - Set of REST APIs that enable HTTP-based clients to access information that is related to the current state of Maximo
 - The Maximo server processes that are part of the deployment, potentially in a multi-clustered setup
 - Information about resources, such as the JVM, memory, operating system, application server, JVM threads, database connection pool, class or classloader, MBO count, event topic tree, JMS Queue connectivity, cache information
Resources

Application Server
IBM WebSphere Tuning (can cause application to hold objects too long if not set correctly)

Oracle WebLogic Tuning

Using Multiple JVMs to Support Users and Functionality

Network Performance
Network caching and compression properties

Browser Caching (Helps with Wide Area Network -WAN- performance and high latency)

Reporting
BIRT Reporting Performance document link
Maximo 7.5 https://www-304.ibm.com/support/entdocview.wss?uid=swg21305031
Maximo 7.6 http://www-01.ibm.com/support/docview.wss?uid=swg21693526
Resources

Database Server Performance
SQL Server Index Tuning

SQL Server Minimizing Locks

SQL Server Row Versioning

Maximo 7.5 on SQL Server Performance

SQL Server Turning of Page Locking

Oracle Cursor Sharing
Resources

Database Server Performance
DB2 Parameter Tuning

Database Connection Leak Resolution
Resources

Application Performance
Understanding Search Methodologies

Start Center Performance
http://www-01.ibm.com/support/docview.wss?uid=swg21405898

Improving Performance Using Small User Interface (UI) Screens
http://www-01.ibm.com/support/docview.wss?uid=swg21420509

Disable Data Validation
http://www-01.ibm.com/support/docview.wss?uid=swg21516856
Resources

Troubleshooting
Debug properties

Collecting Data/Must Gather – General Information

Collecting Data/Must Gather – Performance

Logging

Logging Appenders
 http://www-01.ibm.com/support/docview.wss?uid=swg21446599

Using fetch stop limits to prevent out-of-memory errors

Maximo Performance Monitor Configuration
Resources

Best Practices

Maximo 7.1 Performance
http://www-01.ibm.com/support/docview.wss?uid=swg21440192

Maximo 7.5 Performance Best Practices

Maximo 7.6 Performance Best Practices
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-49c7_9fa4_e094f86b7e98&file=e0291480-2b4f-4366-bb01-e6e7360cd033

Maximo Wiki

Maximo Wiki Performance Page
Resources

Tools
IBM Support Assistant
http://www-01.ibm.com/software/support/isa/

IBM Thread and Monitor Dump Analyzer for Java

Heap Analyzer

Customization Detection Tool

IBM Performance Analysis Suite
https://www.ibm.com/developerworks/community/groups/community/perfanalyst

Wait Tool
https://wait.ibm.com/

Maximo Management Interface (MMI)
https://www.ibm.com/developerworks/community/blogs/d6565698-694d-442b-a26b-c89892fa0c02/entry/Maximo_Management_Interface_MMI_API_overview_and_how_to_use_it?lang=en
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Wb8e8390134d1_4377_be1e_cf6a57f4ea75/page/Maximo%20Management%20Interface
Thank You